Moscow State University by M.V. Lomonosov

The Faculty of Computational Mathematics and Cybernetics

“Microprocessors”
Pechenezhskiy Konstantin

group 206

Moscow, 2008.
Introduction

The theme mentioned in this abstract, always interested me. For a long time I wished to learn, how the small slice of metal and silicon can do any operations; how at a level of microcircuits commands are executed; with what processing of the information begins.
Therefore the abstract contains the basic data on the device of processors, from internal structure and principles of work. Also the basic types of processing of the entrance information, construction of internal structure of the processor, the improvements which have occurred during development of new models of processors are considered.
The report is interesting also because it tells us about those technologies and principles on which we do not reflect at all. For example, about the acceleration of processing of the information in the processor.
Dissecting the Heart of Your Computer
The central processing unit (CPU) is the heart of your computer. This vital com​ponent, often referred to simply as the microprocessor (or even just processor), is in some way responsible for every single thing your computer does. It determines, at least in part, which operating systems you can use, which software packages are available to you, how much energy your PC uses, and how stable your system will be, among other things. The processor also dictates how much your sys​tem will cost: The newer and more powerful the processor, the more expensive the machine.
THE MAKEUP OF A MICROPROCESSOR
You may think a processor is the square or rectangular piece with many pins that fits into the processor slot on your motherboard, but actually that is just the packaging that con​tains the processor. The processor itself is a small, thin chip of silicon crystal, typically less than half a square inch in area. The packaging both protects the processor from contami​nants (such as the air) and allows it, through the pins, to engage the motherboard's circuits and hence the system as a whole. The millions of electronic switches (the transistors) inside the processor need a carefully controlled en​vironment in which to function.
Although most processors are made of sil​icon, any semiconductor material will do, as long as it can be fabricated into high-quality pieces of the necessary size. Silicon is widely available and inexpensive because of its ubiq​uitous use, and it is therefore the most popu​lar material. Silicon works well, because it can form large crystals of uniformly high quality; each crystal is about 8 inches across, which is important because manufacturers want to cut each crystal into as many chips as possible. Precision saws cut the crystal into slices less than a millimeter thick. These slices, called wafers, are chemically treated before being cut into individual chips. The process for physically applying the logical design of the processor to the chip is called photolithography; in this step, transistors and tiny wires are built onto the chip in a series of ten or more layers (called masks). Once this layering is complete, the chip is tested sever​al times to ensure that the transistors and wires are in place and working properly, and then the chip is placed within its packaging. The packaging not only protects the chip but also dissipates heat and allows the processor to connect to the motherboard. Over the years packaging has changed considerably, with new methods adopted for various proces​sor designs. The first Intel chips used dual in​line packages (DIPs), in which two parallel sets of 40 or more pins provided the connection to the motherboard. Because of the parallel design, upgrades to this package could not accommodate significant expansion of connectors: The package would simply get too long for the motherboard as pins were added, and signals from the end pins would re​quire much more time to reach the processor chip than signals from closer pins. For these reasons, the 80286 processor introduced the pin-grid array (PGA) package. This package is typically square, with two, three, or even four rows of evenly spaced pins arranged around a central area. The pins fit into the correspond​ing holes of the socket module on the mother​board, and typically the package is locked in place by a levered arm.
The square (or squarish) package design has remained dominant. As the quest for more capable processors grew, wider buses were needed and consequently more pins were required to fit these buses, and many alterations of the package began to appear. Pentium processors use the staggered pin-grid array (SPGA) design, which staggers the arrangement of the pins to allow them to fit closer together. The Pentium Pro, because it has separate chips for the CPU and the Level 2 cache, uses a design called the multi-chip module (MCM). An MCM is a package that contains more than one chip. Another re​cent package, the leadless chip carrier (LCC), uses tiny contact pads of gold instead of pins to make contact with the motherboard.
Other packages include the tape-carrier package (TCP) — which is as thin as photo​graphic film and is soldered to the mother​board — and the single-edge contact (SEC) car​tridge. This is actually a PGA package mounted on a small daughter-card that attaches to the motherboard through a single-edge connector.

INSIDE THE PROCESSOR
Fundamentally all processors do the same thing. They take signals in the form of 0s and 1s (thus binary signals), manipulate them accord​ing to a set of instructions, and produce output in the form of Os and Is. The voltage on the line at the time a signal is sent determines whether the signal is a 0 or a 1. On a 3.3-volt system, an application of 3.3 volts means that it's a 1, while an application of 0 volts means it's a 0.
Processors work by reacting to an input of Os and 1s in specific ways and then returning an output based on the decision. The deci​sion itself happens in a circuit called a logic gate, each of which requires at least one tran​sistor, with the inputs and outputs arranged differently by different operations. The fact that today's processors contain billions of transistors offers a clue as to how complex the logic system is. The processor's logic gates work together to make decisions using Boolean logic, which is based on the alge​braic system established by mathematician George Boole. The main Boolean operators are AND, OR, NOT, and NAND (not AND); many combinations of these are possible as well. An AND gate outputs a 1 only if both its inputs were 1s. An OR gate outputs a 1 if at least one of the inputs was a 1. And a NOT gate takes a single input and reverses it, out-putting 1 if the input was 0 and vice versa. NAND gates are very popular, because they use only two transistors instead of the three in an AND gate yet provide just as much functionality. In addition, the processor uses gates in combination to perform arithmetic functions; it can also use them to trigger the storage of data in memory.
Logic gates operate via hardware known as a switch - in particular, a digital switch. In the good old days of room-size computers (which looked lots more impressive in movies than today's machines), the switches were actually physical switches, but today nothing moves except the current itself. The most common type of switch in today's computers is a transistor known as a MOSFET (metal-oxide semi​conductor field-effect transistor). This kind of transistor performs a simple but crucial function: When voltage is applied to it, it reacts by turning the circuit either on or off. Most PC microprocessors today operate at 3.3V, but earlier proces​sors (up to and including some ver​sions of the Pentium) operated at 5V. With one type of MOSFET— which will be the focus here—an incoming current at or near the high end of the voltage range switches the circuit on, while an in​coming current near 0 switches the circuit off.
Millions of MOSFETs act together, according to the instructions from a program, to control the flow of electricity through the logic gates to produce the required result. Again, each logic gate contains one or more transistors, and each transistor must control the current so that the circuit itself will switch from off to on, switch from on to off, or stay in its current state.
A quick look at the simple AND and OR logic-gate circuits shows how the circuitry works. Each of these gates acts on two incoming signals to produce one out​going signal. Logical AND means that both in​puts must be 1 in order for the output to be 1; logical OR means that either input can be 1 to get a result of 1. In the AND gate, both incom​ing signals must be high-voltage (or a logical 1) for the gate to pass current through itself. Other​wise the circuit will remain turned off, giving you a logical 0. In the OR gate, as long as ei​ther incoming current is high, the gate will allow the current through.
The flow of electricity through each gate is controlled by that gate's transistor. However, these transistors aren't individual and discrete units. Instead, large numbers of them are manufactured from a single piece of silicon (or other semiconductor material) and linked together without wires or other external ma​terials. These units are called integrated cir​cuits (ICs), and their development basically made the complexity of the microprocessor possible. The integration of circuits didn't stop with the first ICs. Just as the first ICs connect​ed multiple transistors, multiple ICs became similarly linked, in a process known as large-scale integration (LSI); eventually such sets of ICs were connected, in a process called (using the industry's deeply creative naming tech​niques) very large-scale integration (VLSI). Intel's first claim to fame lay in its high-level integration of all the processor's logic gates into a single complex chip. The first processor to do this was the Intel 4004, the forerunner of all of today's Intel offerings.
Two of the most crucial components of the processor are the registers and the system clock. A register is an internal storage area, a unit of memory; and because it is part of the processor, it has the fastest type of memory in your system. Its function is to hold data used by instructions, in the form of bit patterns (se​quences of Os and 1s), in specific places where the processor can find them. The importance of the registers is demonstrated by the fact that processors are identified in one significant way by register size. The term 16-bit processor refers to a processor with registers capable of holding 16 bits of data. Therefore, 32-bit processors have 32-bit register sizes, and 64-bit processors have double that. The greater the number of bits in a register, the more informa​tion the processor can process at once.
The processor spends its time reacting to signals, but it can't react to all of them at the same time or they would become jumbled. Instead, the processor waits until it is given the go-ahead to receive a signal; how long it waits is determined by the system clock. At precise intervals, the system clock sends electrical pulses as a means of polling the system for waiting instructions. If an instruction is waiting and the processor is not already busy with previous instructions, the processor brings the in​struction in and works on it. The number of in​structions the processor can handle in a single clock cycle (one pulse of the system dock) depends on the design of the processor itself. The first microprocessors were able to han​dle only one instruction per cycle, but today's processors speed this up considerably through two process​es, called pipelining and superscalar execution, pipelining allows the processor to read a new instruction from memory before it is finished processing the current instruction. In some processors, several instruc​tions can be worked on simultane​ously. The extent to which pipelined data can flow into the processor is called the pipeline depth. Up through the 80286, Intel processors had a pipeline depth of only 1 (in effect, there was no pipeline at all), but with the 80486 family, the pipeline depth jumped to 4; up to four instructions could be in different pipeline stages.
A superscalar processor has more than one pipeline, meaning it can execute more than one set of instructions at the same time. The​oretically this can double performance, but usually one of the pipelines ends up waiting for an instruction to finish in another pipeline.
INSTRUCTIONS
Computers run on low-level commands called instructions. Low-level means that these commands work directly with the processor, in effect communicating with the processor's most basic capabilities. Each type of proces​sor has a specific group of these commands on which it can act; this group is called the processor's instruction set.
The processor's instructions are accessible to human programmers through various programming languages. The instructions them​selves are written in machine language, the lowest-level language of all, which consists solely of numbers and thus is rarely used by programmers. To get around this difficulty, programmers turn either to assembly lan​guage, which uses the same instructions but gives them names (such as add), or to a high-level language (HLL), in which the machine instructions are encompassed within larger-scale commands.
HLLs don't dispense with machine instruc​tions in any way; they simply make them easier to work with. A program written in an HLL must be compiled, usually first into an internal intermediate language, then to machine language. The two stages, called a compiler front end and back end, allow the compiler writer to separate the parts of the process that are architecture-neutral from those that are architecture-specific. Ultimate​ly, the processor must receive numerical in​structions to do anything at all.
Typical instructions for the x86 instruction set, which has formed the basis of the PC environment for years, include commands for such activities as arithmetic functions, data movement, logical instructions, and input/output instructions. Arithmetic instruc​tions include add, which adds the contents of different registers together, and inc (incre​ment), which adds 1 to the value in the regis​ter. Data movement instructions include mov, which moves data from one register or mem​ory address to another register or memory address, and xchng (exchange), which swaps the values in two different registers or memory addresses. All programs consist of combinations of the wide variety of instructions available to the processor.
PIPELINING AND SUPERSCALAR DESIGNS.
It’s the technique that allows a processor to start the execution of a new instruction before completing the current one. Pipelining saves time by ensuring that the microprocessor doesn’t have to wait for instructions; however, processor can still complete just one instruction per clock cycle. To increase efficiency and thereby save processing time, today’s processors (Compaq/Digital’s Alpha, IBM/Motorola’s PowerPC, Intel’s Pentium line, and Sun’s SPARC) feature superscalar architecture. The main benefit of superscalar technology is that it allows processors to execute more than one instruction per clock cycle with multiple pipelines.
In a superscalar design, the processor looks for instructions that can be handles within the same clock cycle and processors these together. In the Pentium processor, for example, Simple instructions such as mov, or and add can bee processed in this way, although only under specific circumstances (one instruction cannot require the result of a second). But more complex instructions such as those involving floating-point operations can’t be handled this way at all.
Parallel processing offers obvious speed benefit, but superscalar technology has critics. Some argue that it wastes many opportunities for parallel executions, because combining individual instructions takes too much time and because individual instructions are often delayed while waiting for resources. For example, say instruction A is being executed from one pipeline and instruction B from another. Instruction C waits in the first pipeline for instruction A to finish. When instruction A finishes, the obvious thing to do is to replace it with instruction C, the next one in that pipeline. But if instruction C needs the result of instruction B, currently being executed from the other pipeline, it was to sit and wait. This defeats the attempt at parallel execution and ruins any chance of increasing speed. Your expensive new processor is basically twiddling its thumbs.
Even in a well-designed program – one that attempts to make full use of both pipeline and parallel execution – pipelining pipeline can get clogged. To help combat this gridlock, engineers have some designed superscalar processors to perform out-of-order execution. If a free pipeline has nothing to do because instruction C needs the results of instruction B, the processor can look for the first instruction in the program that doesn't depend on instruc​tion B (instruction H, let's say). It then starts working on instruction H and related instruc​tions until instruction B is finished, at which point it goes back to instruction C. Instead of sending the results of the out-of-order in​struction into the registers (where the proces​sor directly deals with data), the processor sends them to a buffer for storage, then sorts everything into the proper order before re​leasing them.
One possible problem with out-of-order execution is that two instructions may need to use the same register. To compensate for this, today's processors can change the names of registers on the fly, in a process known as register renaming. Clearly, out-of-order execution requires extremely careful processor design, because programs will possibly fail if instructions are not processed in the proper order.
INSTRUCTION SETS: RISC AND CISC
An instruction set is the specific group of in​structions that a particular processor can recognize and execute. Over the years, a de​bate has raged over two processor-design philosophies surrounding the implementa​tion of instruction sets. The first approach, initially known as microcode, is CISC (com​plex instruction-set computing). On the other end is RISC (reduced instruction-set computing).
The first processors used hardware to execute each instruction. These hard-wired processors were extremely fast, since there was no software for the instructions to work through. As you might imagine, though, this approach caused a major problem: Any change to the hardware required a change to the (software) instructions as well, and vice versa. Simple programs were possible, but adding complexity was nearly impossible. To get around this problem, IBM devised microcode—simple software stored on the chip from which the processor obtained its instructions.
One advantage of CISC's microcode was that the instruction set could be modified much more easily than before, and thus in​creasingly complex instructions were possible. Also, because each instruction replaced several simple hard-wired instructions, programs could be written with a smaller number of instructions overall. Another advantage was that CISC programs took less memory space, and memory was expensive back in the sixties and seventies.
The Duo version of Intel Core (Yonah) includes two computational cores, providing performance per watt almost as good as any previous single core Intel processors. In battery-operated devices such as notebook computers, this translates to getting as much total work done per battery charge as with older computers, although the same total work may be done faster. When parallel computations and multiprocessing are able to utilize both cores, the Intel Core Duo delivers much higher peak speed compared to the single-core chips previously available for mobile devices.

The shortcomings of Intel Core (Yonah) are:
1. The same or even slightly worse "performance per watt" in single threaded or non-parallel applications compared to its predecessor.

2. 32-bit processes only. 64-bit processes are not supported. (See the Intel Core 2 successor, which is a 64-bit processor.)

3. High memory latency due to the lack of on-die memory controller (further aggravated by system-chipset's use of DDR-II RAM)

4. Limited Floating Point Unit (multiply/divide) throughput for non-parallel computations or single-threaded processes; this is due to the smaller number of floating-point units in each CPU core compared to some previous designs.

The Yonah platform requires all main-memory transactions to pass through the Northbridge of the chipset, increasing latency compared to the AMD's Turion platform. However, application tests showed Intel Core's L2-cache system is quite effective at overcoming main-memory latency; despite this limitation, Intel Core (Yonah) sometimes managed to outperform AMD's Turion.

The Sossaman processor for servers, which is based on Yonah, also lacks Intel 64-bit support. For the server market, this had more severe consequences, since all major server operating systems already supported x86-64, and Microsoft Exchange Server 2007 even requires a 64-bit processor to run.

According to Mobile Roadmaps from 2005, Intel's Yonah project originally focused more on reducing the power consumption of its p6+ Pentium M-based processor and aimed to reduce it by 50% for Intel Core (Yonah). Intel continued recommending Pentium NetBurst-based processors for mobile high performance applications (although these were less power efficient) until the Yonah project succeeded in extracting higher performance from its lower-power-consumption design. The Intel Core Duo's inclusion of two highly-efficient cores on one chip can provide better performance than a Pentium NetBurst core, but with much better power-efficiency. Intel no longer recommends its Pentium Netburst-based processors for mobile devices.

On July 27, 2006, Intel's Core 2 processors were released. By 2Q 2007, Intel expected 90% of its laptop CPU production to be converted to the heavily-revised Intel Core 2 processors. The original Intel Core (Yonah) product had an unusually short lifespan as a stepping stone to the 64-bit Intel Core 2.
Sources:
1. http://www.pcmech.com/show/processors/35/11/
2. http://www.intel.com/technology/architecture/index.htm
3. http://en.wikipedia.org/wiki/Intel_Core_2

4. PC Magazine 9, 1998

5. PC Magazine 30, 1998

PAGE
7

